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Universal stochastic series expansion algorithm for Heisenberg model and Bose-Hubbard model
with interaction
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We propose a universal stochastic series expan@&B method for the simulation of the Heisenberg
model with arbitrary spin and the Bose-Hubbard model with interaction. We report the calculations involving
soft-core bosons with interaction by the SSE method. Moreover, we develop a simple procedure for increased
efficiency of the algorithm. From calculation of integrated autocorrelation times we conclude that the method
is efficient for both models and essentially eliminates the critical slowing down problem.
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I. INTRODUCTION vestigations of quantum spif40,13-15, bosong11], and
one-dimensional fermion systerfs?] have been performed.

Recently, significant progress in quantum Monte CarloHowever, at present, investigations of hard-core bosons and
methods has been observed. During the last two decadespin S=1/2 systems are predominant in literature.
advanced quantum Monte Carlo algorithms have been devel- The authors of Ref{13] have investigated spin systems
oped. First quantum Monte Carlo methods, so-called worldwith spinS>1/2 by loop algorithms. But they have not taken
line algorithms, were based on Suzuki-Trotter approximationnto account the external field. Rather they have used the
and used local updatg$,2]. It has been replaced by the loop spin-split representation, i.e., they have replaced the original
algorithms that use nonlocal updates. Using nonlocal loogpin operators by the sum ofS2Pauli operators. Such rep-
updates allows to decrease autocorrelation times by orders efsentation is not suitable because it requires extra memory
magnitude [3]. Later the loop algorithms in continuous resources and it cannot be applied directly for soft-core
imaginary time have been developftl. The continuous- bosons.
time implementation of the loop algorithm has eliminated Henelius et al. have studied ferromagnetic Heisenbegr
errors, resulting from the Trotter discretization, and, hencemodel with spin up t&8=2 in a wide range of external field
loop algorithms have become numerically exact methods. by using the SSE algorithifil5]. Our calculations indicate

Unfortunately, loop algorithms are inefficient in the pres-that the standard SSE algorithm is quite effective in the case
ence of external field5]. The origin of this slow-down re- of ferromagnetic Heisenberg model, but for the simulation of
sults from the method of including external field into the Heisenberg antiferromagnet it is necessary to increase effi-
simulations. External field is taken into account through theciency of the algorithm.
global weight, which increases as the field increases. To con- Till now we do not know about simulations of soft-core
struct efficient algorithm one should take into account exterbosons by the loop or SSE algorithms. Very recently Ka-
nal field locally, in the loop construction. For the first time washimaet al. have developed a method féree soft-core
this idea was implemented in the framework of the wormbosons based on the mapping of bosonic models to the spin
algorithm{6]. models[16]. For the simulation of spin system they have

Both worm and loop algorithms work directly in continu- ysed coarse-grained loop algorithm with the spin-split repre-
ous imaginary time. At the same time there is a numericallysentation. Unfortunately, the authors have given any quanti-
exact quantum Monte Carlo method that works in the disative characteristics of their algorithm efficiency.
crete basis. It is a stochastic series expané&85 method. In the present work we propose universal algorithm based
SSE algorithm is based on power series expansion of a pagn the SSE method that allows to investigate both spin sys-
tition function. Initially SSE method was developed with lo- tems with arbitrary spin in the presence of external field and
cal update$7]. Later the algorithm with loop updaté&orm  systems ofinteracting soft-core bosons in the presence of
update was proposed8]. Applying loop updates for SSE  chemical potential. Also we develop a simple procedure that

method has the same favorable consequence as for worlgtiows us to increase efficiency of the SSE algorithm in the
line algorithms, and SSE method has become powerful togheneral case.

for exploring quantum many-body systems. Recently Sand-
vik and Syljumen have introduced the concept of directed
loops in stochastic series expansion, which allows to perform
the simulation in a wide range of external fields.
In the last few years, loop algorithms and SSE algorithm During the construction of the algorithm we follow the
have been used for exploring different quantum systems. Inideas of the work of Ref{9]; therefore, we do not describe
the SSE method in details but outline it briefly.
Let us consider the Heisenberg model in the case of arbi-
*Electronic address: mikhail_zyubin@yahoo.com trary spinS in the presence of external longitudinal fiegid
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where (i,j) denotes summation over the pairs of nearest-

neighbor sites. Following the ideas of the SSE method, we g 1. An example of different verticega) In the case of
rewrite Hamiltoniang1) and(2) as a sum over diagonal and hard-core bosons @=1/2 Heisenberg mode(b) In the case of the

off-diagonal bond operators: spin-split representation for tHé=3/2 Heisenberg mode(c) Ver-
tex (b), in the filling number representation.“1” is identified with
. . . ; Co 2 o )
b=— ORI the spin projectiors’= —1/2, “2" is identified with the spin pro-
J<i§,j:) (Hi=Hi), ® jection S?=1/2. For the Bose Hubbard model one can identify “1”

with one boson per site, “2” with two bosons per site.
where minus corresponds to antiferromagnet, plus corre-

sponds to ferromagnet and the Hubbard mdttel the Hub- - e JNB(a(p)|Hi(jd)|a,(p)>
bard model corresponds td). In the case of the Heisenberg P(I—H{")= [ , (7)
model the operators are n

~ h ~(d) ° L-n+1

H'=CFSST+ =(S+$5), (4) P(R®—T)=

23 INB(a(p)[APa(p))’
~ () T where|a(p)) is the system state afteroperators have been
Hi =5(S7S +S ), applied to it,N is the number of bonds. Note that diagonal
update changes the expansion powday *= 1.
and, correspondingly, in the case of the Bose Hubbard model In the stage of loop update, interchanging of diagonal and
the operators are nondiagonal operators is carried out with the fixed expansion
powern. At the same time system stdt@) can be changed.
~(d)_ \% u , L, u In the case of spi®=1/2 loop update is executed in the
Hi?=C—ninj— 5o (i+np)+o-(ni+n), (5 following way. Nonunit operators can be represented as ver-
tices with four legq Fig. 1(a).] One of then vertices is se-
A= p'h. +b.b! lected and one of its four legs is selected at random. After
4 IR that exit leg of the vertex is selected according to appropriate

One should guarantee non-negativity of all matrix element®robabilities and the spins at both the entrance and exit legs

of operatorg4) and(5) by appropriate choosing of constants & flipped. Note that the exit leg unlql_Jer points to t_he en-

C. trance leg of the next vertex. The loop is constructed in such
The SSE algorithm is based on the series expansion of tHz Way that it closes.

partition functionZ with respect to inverse temperatuge At S>1/2, spin-split representation of spin operators is
powers. To simplify the Monte Carlo simulation, Sandetk  Widely used[Fig. 1(b)]. In this case vertex contains 4%2

al. [8,9] proposed to introduce unit operatdrsaand cut off *+1) variables, which can take the valuel. During the
the expansion a=L power. It should be pointed out that construction of the loop, spins at the entrance and the exit

i o R legs are flipped. But now the loop propagates through the
unit operators can be distributed in different ways. So Wevegrtices witﬁp4($+1) legs, and thgrepforz gnumber ofgpos-

obtain the formula for the partition function sible loop paths increase rapidly as spin increases.
(3B)(L—n)! _The SSE algorithm gllows us to refuse spin-split represen-
Z=E E —< a a>, 6 tation and to apply filling number representation, which is
a {S} L! applicable both for the Heisenberg and for the Bose Hubbard
models. In order to do it, we use well-known expressions for
where y denotes the operator type—unit, diagonal, nondi-the matrix elements of corresponding operators
agonal;S, is a sequence of operator indices; amds the

number of nonunit operators @@ . (s|S"|s—1)=(s—1|S|s)=(S+5s)(S—s+1), (8)
The Monte Carlo simulation is carried out with diagonal
and loop updates. The simulation starts with an arbitrary <n|bT|n—1>=<n—1|b|n)=\/ﬁ.

state|«) and operator string, containing only unit opera-
tors. During the diagonal update one attempts to interchangdow vertex has only four legs at arbitrary spin or at arbitrary
diagonal and unit operators with the probabilities maximum filling number for bosonfFig. 1(a)]. However,
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variables connected with legs take valuess, ... S for In the case of the group with one nonbounce process,
spins or Q... ,nyax for bosons. Therefore, during the con- corresponding set of equations is
struction of the loop, we cannot use only flip of states at

entrance and exit legs. So we introduce increasing and de- Wiy=ayt+ay,, (12)
creasing processes. To avoid discontinuous loop paths during
the construction of the loops, we use a simple rule: if state at W, =az,+ay;.

the exit leg is decreasdihcreaseflthen at the entrance leg
of the next vertex decreasin@ncreasing process will be S0 we can always exclude one of the bounce processes by
chosen. choosing a;,=W,,a;;.=W;—W,,a,»=0 if W;>W, and
a,=Wy,a,,=W,—W,,a,,=0, otherwise. It is obvious that
if W;=W,, bounce processes are absent.
Sandvik and Syljusen forS= 1/2 Heisenberg model have
Recently Sandvik and Syljsan[9] have shown that in analyzed analytically groups with three nonbounce processes
order to fulfil detailed balance for loop update one should 9], which are described by the set of equations
solve the set of equations

IIl. OPTIMIZATION OF THE ALGORITHM

W =ajtapptags, (12
W= 2 ajj C) W, =ag,t+ay+ass,

- = Qg3+ s+ aa,.
whereW, are the matrix elements of operatgsy and (5), W3 =853+ 8311 83

anda;; are all allowed processes. For examg, denotes
bounce process, which does not change matrix elemMgnt
and a;; denotes the process that transforifvs to W;. It
should be pointed out that ad; must be non-negative and
because of detailed balance principle=a;; . Froma;; one

They proposed different solutions of the set of E(®) for
various parameters of the model. It should be pointed out
that some solutions contain two bounce processes. At the
same time for the case of arbitrary spin one cannot analyti-
! o cally analyze all allowed processes and obtain corresponding
can obtain probabilities of all processeB(W,—Wj)  yropapilities because the number of processes grows rapidly
=a;;/W; and correspondingly?(W;— W;) = a;; /W; . as spin increases.

We have found that in the case of arbitrary spin, set of all  \ne considered the set of Eq4.2), in general, and con-
processesa;; } is decomposed into closed groups containing|,ded that only one bounce process is needed atvéiny

one, three, and six nonbounce processes. The group with 0Ng\q there is no need to solve set of EGs2) analytically,

nonbounce process is described by the set of equations wiffl ; it is possible to use simple procedure for obtaining non-
two equations, and groups with three and six nonbounce P'%egative solution of Eqg12).

cesses are described by the sets of equations with three andg; <t \we demand all bounce processesto be 0. Then

four eq_uations, respe_cti'vely. So the set of H§s.is decom-. solution of Eqs(12) takes the form
posed into sets consisting of two, three, and four equations.

Relations between number of various groups are different at Wi+ W — W
. . . 1 2 3
different values of spin. For example, in the case $f a12=f, (13
=1/2, there are only groups containing three nonbounce pro-
cesses. However, &=1, groups containing three and six
non-bounce processes appear. Number of such groups grows A= W1+W3_W2,
with increase in spin until spin value becom8s 5/2. At 2
S=5/2 part of groups with one nonbounce process is 4/15,
with three nonbounce processes is 3/15, and with six non- W, +W;3—W,;
bounce processes is 8/15. At5/2 the relations between 23~ 2 '

number of groups are the same as $3t5/2.
It is obvious that there is a particular non-negative solu{We take into account that;=a;;.) If one of a; is nega-
tion of the set of Egs(9). It is so-called heat-bath solution: tive, then two others are certainly positive. So we need only
one bounce process. Let;,<0 to be negative, then we

_WiW; 10 should introduce bounceas; in a such way thaé,, becomes
aj = : (10 positive anda;3,a,3; do not change the sign. L&V;>W,,
E W then by choosingzz=W;—W,; —W, /5 we get new solution
k
of Egs.(12):
In the denominator, the sum is over all matrix elements be- W 1
longing to the group. Unfortunately, heat-bath solution gives a12=—2( 1— _>, (14)
rise to the inefficient algorithm, since all bounce processes 2 J
a;; are nonzero. In order to increase efficiency of algorithm,
one should exclude bounce processes. Let us do it for differ- oot V2L
ent types of groups. BT 2 s '
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WZ( 1) 0.4 T .y
axp=—7| 1+ /.

2 6 03[ -
It is obvious that at anys>1 solution (14) is positive. If ' -

Pbounce

W,>W,, one should interchang&/; by W, in Egs.(14). It
should be pointed out that &=1 solution(14) coincides
with some solutions proposed in R¢Q]. We do not assert
that our solution is most effective, but the given procedure is
universal and can be applied to arbitrary spin.

The groups with six nonbounce processes are described

by the set of equations = .
k= : ]
e - ]
W, =ap,+az;+azstay, o — I I L e e
0.0 0.5 1.0 1.5 2.0
hiJ

Ws=agst+az;tag+ass,
FIG. 2. Upper plot: bounce probabilities vs external field in the

Wy=agstastagtass. S=5/2 antiferromagnetic Heisenberg modelNy=16 andg= 10.

) . Coupling constant ig=1.0. Dark circles correspond to the opti-
As well in the case of group with three nonbounce processesyizeg algorithm and open circles correspond to the heat-bath algo-

we demandy;; =0 and take into accourt; =a;; . Then We  jhm_ Lower plot: integrated autocorrelation times for the magne-
obtain the set of equations with four equations and six varitization vs external field in the cases of optimized and heat-bath
ables, i.e., we have two free parameters. Let us assyfie aigorithms.

=ags=4aj3, then we obtain solution of Eq$l5):

pzd

1 S
Wi+ Wo—W, Wi _ T z
a12=f—?, (16) M NS ;l <S|>7
W3 1 NS
A 3=—, - Y
13 3 Nb Ns IZ]. <nl>
Wit W= W, W wheren is the number of nonunit operators in operator string
A4~ 2 6’ and N is the number of sites. We have checked our results
with exact diagonalization and have found that the relative
Wo+W,—W;  Ws deviation of our results from the exact is less than 310
qu=— 5 g -10°4,

It is well known that integrated autocorrelation times is a
We can guarantee positivity of terms, such a§;¢W,  quantitative measure of efficiency of a Monte Carlo sam-
—W,4)/2, by using a procedure that we apply for the set ofpling. We calculate autocorrelation times using bining
equations with three equations. Thus, we introduce on&ethod, which is described in RéB]
bounce process. After that we obtain expressions sueh as First of all it is interesting to analyze influence of bounce
—WS,/6 with positivea. If latter expression is negative, one Processes on efficiency of the algorithm. To this end we cal-
can add processiss=Ws(1—1/5,), and we can provide culate for the Heisenberg antiferromagnet integrated autocor-

positivity of solution(16) by choosings, sufficiently large. ~ relation times for magnetization by using heat-bath solution
and optimized algorithm described in the preceding section.
V. TEST CALCULATIONS We consider spirS=5/2 beca_use at this value all types of
groups are present and relations between number of groups
The SSE algorithm is universal in any dimension. Withdo not change with further spin increase. As shown in Fig. 2,
increase in dimension extra bonds arise, but ideas of loojn the case of the optimized algorithm bounce probabilities
construction remain the same. Therefore, we test the praare less than in the case of heat-bath solution. Accordingly
posed scheme on 1D systems. autocorrelation times are less for the optimized algorithm.
We calculate magnetizatiod for the Heisenberg model, For other calculations reported here the optimized algorithm
a mean number of bosom, for the Bose Hubbard model, has been used.
and energy for both models. We use well-known estimators Figure 3 shows autocorrelation times for magnetization
[9] versus external field for ferromagnetigpper ploj and anti-
ferromagnetic(lower ploy Heisenberg model with different
E—_ @ (17) spin S. Calculations have been done for the chain vith
' =16 sites atB3=10.
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FIG. 3. Integrated autocorrelation times for the magnetization F|G. 4. Integrated autocorrelation times for the mean number of
and energy vs external field in ferromagnetipper plo} and anti-  posons and energy vs chemical potential in the Bose Hubbard
ferromagnetiqlower ploy Heisenberg model with different spB  model with different maximum site filling al,=16 andg=10.
atNs=16 andg=10. Coupling constant i§=1.0. The hopping constant is=1.0, U=0.5, V=0.5.

One can see some increase of autocorrelation times wigB e .
spin increase for the antiferromagnet chain. However, it i ounce probabiliies in the case of heat.'bath. algorithm are
difficult to compare efficiency of the algorithm at fixed tem- very I_arge and exceEd bounce probabilities n the case of

optimized algorithm by the order of magnitude. Large

perature and different spin. Mean number of nonunit Operabounce robabilities give rise to enormous loops, which walk
tors can be roughly estimated bgJ3S?. It is clear that this P 9 ; . pS, :
around the system many times until closed. Construction of

value grows rapidly with the spiSincrease. We observe that
the mean number of nonunit operatdrs)~100 at3=10

andNg=16 in the case of spiB=1/2, whereas in the case of 20 ' ' ' -
spin S=5/2 at the same condition&)~2000. Thus, the 5 M

simulation ofS=5/2 Heisenberg antiferromagnet@t 10 is

<loop length>

as hard as the simulation 8t 1/2 Heisenberg antiferromag- 10 F -
net at3~100. Hence, the origin of autocorrelation time in- r 1
crease is clear and, on the other hand, it is obvious that the S‘M’
algorithm is very efficient. It should be pointed out that the 0 , | , | , | ,
algorithm works efficiently in a wide range of external fields. 0.50 L |
For the ferromagnet chain we obtain good autocorrelation o

times for magnetization in a wide range of external fields
with the exception of zero field. At zero field, autocorrelation
times for magnetization become very largee do not show
corresponding points at Fig.).3lt is a known sequence of 1
degeneracy states with spins up and spins down. 000¢t—t—2 s o s e oo s o g oot
Also we have done calculations for the Bose Hubbard 15

model with interaction. As seen from Fig. 4 autocorrelation l |

times for energy is of the order of unity. Autocorrelation 10 W

maximum filling numbem,,,. Note that we can use any 5L 2

maximum filling numbemN,,.x, and for large class of prob- I |
L

Pbounce
o
[\M]
(4]
I
|

times for mean number of bosons grow with in increase

Tint [N]

lems the valueN,,,~5, . . . ,10 isquite enough. 0 . ! . ! . I
Investigation of many-body quantum system behavior 0.4 0.5 0.6 0.7 0.8
near the critical points is one of the interesting problems in /U

Condenced matter phys!cs. Kawashireal. have te$ted FIG. 5. Lower plot: integrated autocorrelation times for the
SSE_—dlrec_ted loop algorithm for 3D system and_falled t_omean number of bosons in the Bose Hubbard modbl,at16 and
obtain _est|mates for the observables near the critical POINg_ 10, N,,,,=5. Hopping constant=1.0, V=0.0, u=U. Dark

[16]. It is well known that 1D Bose Hubbard model experi- cjrles correspond to the optimized algorithm, open circles corre-
ences superfluid-insulator transition at/W).=0.608, V. spond to the heat-bath algorithm, and squares correspond to chain
=0, u=U [17]. We calculate autocorrelation times near thewith N,=50. Middle plot: bounce probabilities for optimized and
critical point for Ny=16N;=50 chains atf=10, N,  heat-bath algorithms. Upper plot: mean length of loops in units of
=5. As seen from Fig. 5 autocorrelation times for both op-(n) for optimized and heat-bath algorithms, accordingly. The arrow
timized and heat-bath algorithms are quite reasonable. Buyioints to the critical point “Mott insulator-superfluid.”
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such big loops takes a lot of time and the simulation becomegroups with six processes maximum two bounces are
inefficient. So we can conclude that the SSE algorithm alnheeded. We have found that relations between number of
lows us to perform simulations near the critical pdiatleast various groups are different up to sp8=5/2 (maximum
near superfluid-insulator transition in Lhowever, it is de-  filling numberN,,,,=5). After spinS=5/2 the relations do

sirable to exclude bounce processes. not change.
Calculations of integrated autocorrelation times demon-
V. SUMMARY strate increased efficiency of the algorithm under bounce

o i . processes excluding. We have shown that the proposed algo-

_ In conclusion it should be emphasized that the algorithninm works in a wide range of external fields both for the
|n.troduc_ed here.allows us to explore the Helsenbgrg .mOquieisenberg model with arbitrary spi and for the Bose
with arbitrary spin and the Bose Hubbard model with inter-pphard model with interaction. Also we have found that the
action. With the help of filling number representation we gigorithm is efficient near the superfluid-insulator transition.
create the unified code for both models. Note that from al-
gorithmic point of view differences between the models arise ACKNOWLEDGMENTS
only at the stage of matrix elements calculation.

We propose a universal procedure for excluding bounce We are grateful to I. A. Rudnev for support. We acknowl-
processes. It has been obtained that for groups with one aratige financial support from RFBR under Grant No. 03-02-
three processes only one bounce is needed and in the casel&979.
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