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Universal stochastic series expansion algorithm for Heisenberg model and Bose-Hubbard mode
with interaction

M. V. Zyubin* and V. A. Kashurnikov
Moscow Engineering Physics Institute, Moscow 115409, Russia

~Received 10 March 2003; published 18 March 2004!

We propose a universal stochastic series expansion~SSE! method for the simulation of the Heisenberg
model with arbitrary spin and the Bose-Hubbard model with interaction. We report the calculations involving
soft-core bosons with interaction by the SSE method. Moreover, we develop a simple procedure for increased
efficiency of the algorithm. From calculation of integrated autocorrelation times we conclude that the method
is efficient for both models and essentially eliminates the critical slowing down problem.

DOI: 10.1103/PhysRevE.69.036701 PACS number~s!: 02.70.Ss, 05.10.Ln, 05.30.Jp, 75.10.Jm
rl
d
v
rld
io
p
o

rs
s

ed
ce
.
s

e
th
o

te
e
rm

-
ll
is

p
o-

or
to
n
ed
r

hm
. I

.
and

s
n
the
inal
-
ory

ore

gr

ase
of

effi-

e
a-

spin
e
re-
nti-

sed
ys-
nd
of
hat
the

e
e

rbi-
I. INTRODUCTION

Recently, significant progress in quantum Monte Ca
methods has been observed. During the last two deca
advanced quantum Monte Carlo algorithms have been de
oped. First quantum Monte Carlo methods, so-called wo
line algorithms, were based on Suzuki-Trotter approximat
and used local updates@1,2#. It has been replaced by the loo
algorithms that use nonlocal updates. Using nonlocal lo
updates allows to decrease autocorrelation times by orde
magnitude @3#. Later the loop algorithms in continuou
imaginary time have been developed@4#. The continuous-
time implementation of the loop algorithm has eliminat
errors, resulting from the Trotter discretization, and, hen
loop algorithms have become numerically exact methods

Unfortunately, loop algorithms are inefficient in the pre
ence of external field@5#. The origin of this slow-down re-
sults from the method of including external field into th
simulations. External field is taken into account through
global weight, which increases as the field increases. To c
struct efficient algorithm one should take into account ex
nal field locally, in the loop construction. For the first tim
this idea was implemented in the framework of the wo
algorithm @6#.

Both worm and loop algorithms work directly in continu
ous imaginary time. At the same time there is a numerica
exact quantum Monte Carlo method that works in the d
crete basis. It is a stochastic series expansion~SSE! method.
SSE algorithm is based on power series expansion of a
tition function. Initially SSE method was developed with l
cal updates@7#. Later the algorithm with loop updates~worm
updates! was proposed@8#. Applying loop updates for SSE
method has the same favorable consequence as for w
line algorithms, and SSE method has become powerful
for exploring quantum many-body systems. Recently Sa
vik and Syljuåsen have introduced the concept of direct
loops in stochastic series expansion, which allows to perfo
the simulation in a wide range of external fields@9#.

In the last few years, loop algorithms and SSE algorit
have been used for exploring different quantum systems
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vestigations of quantum spins@10,13–15#, bosons@11#, and
one-dimensional fermion systems@12# have been performed
However, at present, investigations of hard-core bosons
spin S51/2 systems are predominant in literature.

The authors of Ref.@13# have investigated spin system
with spinS.1/2 by loop algorithms. But they have not take
into account the external field. Rather they have used
spin-split representation, i.e., they have replaced the orig
spin operators by the sum of 2S Pauli operators. Such rep
resentation is not suitable because it requires extra mem
resources and it cannot be applied directly for soft-c
bosons.

Henelius et al. have studied ferromagnetic Heisenbe
model with spin up toS52 in a wide range of external field
by using the SSE algorithm@15#. Our calculations indicate
that the standard SSE algorithm is quite effective in the c
of ferromagnetic Heisenberg model, but for the simulation
Heisenberg antiferromagnet it is necessary to increase
ciency of the algorithm.

Till now we do not know about simulations of soft-cor
bosons by the loop or SSE algorithms. Very recently K
washimaet al. have developed a method forfree soft-core
bosons based on the mapping of bosonic models to the
models @16#. For the simulation of spin system they hav
used coarse-grained loop algorithm with the spin-split rep
sentation. Unfortunately, the authors have given any qua
tative characteristics of their algorithm efficiency.

In the present work we propose universal algorithm ba
on the SSE method that allows to investigate both spin s
tems with arbitrary spin in the presence of external field a
systems ofinteracting soft-core bosons in the presence
chemical potential. Also we develop a simple procedure t
allows us to increase efficiency of the SSE algorithm in
general case.

II. THE ALGORITHM

During the construction of the algorithm we follow th
ideas of the work of Ref.@9#; therefore, we do not describ
the SSE method in details but outline it briefly.

Let us consider the Heisenberg model in the case of a
trary spinS, in the presence of external longitudinal fieldh:
©2003 The American Physical Society01-1
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Ĥ56J(
^ i , j &

Si•Sj2h(
i

Si
z , ~1!

and the Bose Hubbard model with interaction

Ĥ52t(
^ i , j &

~bi
†bj1bibj

†!1V(
^ i , j &

ninj1U(
i

ni
22m(

i
ni ,

~2!

where ^ i , j & denotes summation over the pairs of neare
neighbor sites. Following the ideas of the SSE method,
rewrite Hamiltonians~1! and~2! as a sum over diagonal an
off-diagonal bond operators:

Ĥ52J(
^ i , j &

~Ĥ i j
(d)7Ĥ i j

(n)!, ~3!

where minus corresponds to antiferromagnet, plus co
sponds to ferromagnet and the Hubbard model~for the Hub-
bard modelJ corresponds tot). In the case of the Heisenber
model the operators are

Ĥ i j
(d)5C7Si

zSj
z1

h

2J
~Si

z1Sj
z!, ~4!

Ĥ i j
(n)5

1

2
~Si

1Sj
21Si

2Sj
1!,

and, correspondingly, in the case of the Bose Hubbard m
the operators are

Ĥ i j
(d)5C2

V

t
ninj2

U

2t
~ni

21nj
2!1

m

2t
~ni1nj !, ~5!

Ĥ i j
(n)5bi

†bj1bibj
† .

One should guarantee non-negativity of all matrix eleme
of operators~4! and~5! by appropriate choosing of constan
C.

The SSE algorithm is based on the series expansion o
partition functionZ with respect to inverse temperatureb
powers. To simplify the Monte Carlo simulation, Sandviket

al. @8,9# proposed to introduce unit operatorsÎ and cut off
the expansion atn5L power. It should be pointed out tha
unit operators can be distributed in different ways. So
obtain the formula for the partition function

Z5(
a

(
$SL%

~Jb!n~L2n!!

L! K aU)
k51

L

Ĥk
(g)UaL , ~6!

where g denotes the operator type—unit, diagonal, non
agonal;SL is a sequence of operator indices; andn is the
number of nonunit operators inSL .

The Monte Carlo simulation is carried out with diagon
and loop updates. The simulation starts with an arbitr
stateua& and operator stringSL containing only unit opera-
tors. During the diagonal update one attempts to intercha
diagonal and unit operators with the probabilities
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P~ Î→Ĥ i j
(d)!5

JNb^a~p!uĤ i j
(d)ua~p!&

L2n
, ~7!

P~Ĥ i j
(d)→ Î !5

L2n11

JNb^a~p!uĤ i j
(d)ua~p!&

,

whereua(p)& is the system state afterp operators have bee
applied to it,N is the number of bonds. Note that diagon
update changes the expansion powern by 61.

In the stage of loop update, interchanging of diagonal a
nondiagonal operators is carried out with the fixed expans
powern. At the same time system stateua& can be changed

In the case of spinS51/2 loop update is executed in th
following way. Nonunit operators can be represented as
tices with four legs@Fig. 1~a!.# One of then vertices is se-
lected and one of its four legs is selected at random. A
that exit leg of the vertex is selected according to appropr
probabilities and the spins at both the entrance and exit
are flipped. Note that the exit leg uniquely points to the e
trance leg of the next vertex. The loop is constructed in s
a way that it closes.

At S.1/2, spin-split representation of spin operators
widely used@Fig. 1~b!#. In this case vertex contains 4(2S
11) variables, which can take the value61. During the
construction of the loop, spins at the entrance and the
legs are flipped. But now the loop propagates through
vertices with 4(2S11) legs, and therefore a number of po
sible loop paths increase rapidly as spin increases.

The SSE algorithm allows us to refuse spin-split repres
tation and to apply filling number representation, which
applicable both for the Heisenberg and for the Bose Hubb
models. In order to do it, we use well-known expressions
the matrix elements of corresponding operators

^suS†us21&5^s21uS2us&5A~S1s!~S2s11!, ~8!

^nub†un21&5^n21ubun&5An.

Now vertex has only four legs at arbitrary spin or at arbitra
maximum filling number for bosons@Fig. 1~a!#. However,

FIG. 1. An example of different vertices.~a! In the case of
hard-core bosons orS51/2 Heisenberg model.~b! In the case of the
spin-split representation for theS53/2 Heisenberg model.~c! Ver-
tex ~b!, in the filling number representation.‘‘1’’ is identified with
the spin projectionSz521/2, ‘‘2’’ is identified with the spin pro-
jectionSz51/2. For the Bose Hubbard model one can identify ‘‘1
with one boson per site, ‘‘2’’ with two bosons per site.
1-2
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variables connected with legs take values2S, . . . ,S for
spins or 0, . . . ,nmax for bosons. Therefore, during the co
struction of the loop, we cannot use only flip of states
entrance and exit legs. So we introduce increasing and
creasing processes. To avoid discontinuous loop paths du
the construction of the loops, we use a simple rule: if stat
the exit leg is decreased~increased! then at the entrance le
of the next vertex decreasing~increasing! process will be
chosen.

III. OPTIMIZATION OF THE ALGORITHM

Recently Sandvik and Syljua˚sen @9# have shown that in
order to fulfil detailed balance for loop update one sho
solve the set of equations

Wi5(
j

ai j , ~9!

whereWi are the matrix elements of operators~4! and ~5!,
and ai j are all allowed processes. For example,aii denotes
bounce process, which does not change matrix elementWi ,
and ai j denotes the process that transformsWi to Wj . It
should be pointed out that allai j must be non-negative an
because of detailed balance principleai j 5aji . Fromai j one
can obtain probabilities of all processesP(Wi→Wj )
5ai j /Wi and correspondinglyP(Wj→Wi)5ai j /Wj .

We have found that in the case of arbitrary spin, set of
processes$ai j % is decomposed into closed groups contain
one, three, and six nonbounce processes. The group with
nonbounce process is described by the set of equations
two equations, and groups with three and six nonbounce
cesses are described by the sets of equations with three
four equations, respectively. So the set of Eqs.~9! is decom-
posed into sets consisting of two, three, and four equatio
Relations between number of various groups are differen
different values of spin. For example, in the case ofS
51/2, there are only groups containing three nonbounce
cesses. However, atS51, groups containing three and s
non-bounce processes appear. Number of such groups g
with increase in spin until spin value becomesS55/2. At
S55/2 part of groups with one nonbounce process is 4/
with three nonbounce processes is 3/15, and with six n
bounce processes is 8/15. AtS.5/2 the relations betwee
number of groups are the same as forS55/2.

It is obvious that there is a particular non-negative so
tion of the set of Eqs.~9!. It is so-called heat-bath solution

ai j 5
WiWj

(
k

Wk

. ~10!

In the denominator, the sum is over all matrix elements
longing to the group. Unfortunately, heat-bath solution giv
rise to the inefficient algorithm, since all bounce proces
aii are nonzero. In order to increase efficiency of algorith
one should exclude bounce processes. Let us do it for di
ent types of groups.
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In the case of the group with one nonbounce proce
corresponding set of equations is

W15a111a12, ~11!

W25a221a21.

So we can always exclude one of the bounce processe
choosing a125W2 ,a115W12W2 ,a2250 if W1.W2 and
a125W1 ,a225W22W1 ,a1150, otherwise. It is obvious tha
if W15W2, bounce processes are absent.

Sandvik and Syljua˚sen forS51/2 Heisenberg model hav
analyzed analytically groups with three nonbounce proces
@9#, which are described by the set of equations

W15a111a121a13, ~12!

W25a221a211a23,

W35a331a311a32.

They proposed different solutions of the set of Eqs.~12! for
various parameters of the model. It should be pointed
that some solutions contain two bounce processes. At
same time for the case of arbitrary spin one cannot ana
cally analyze all allowed processes and obtain correspon
probabilities because the number of processes grows rap
as spin increases.

We considered the set of Eqs.~12!, in general, and con-
cluded that only one bounce process is needed at anyWi .
And there is no need to solve set of Eqs.~12! analytically,
but it is possible to use simple procedure for obtaining n
negative solution of Eqs.~12!.

First we demand all bounce processesaii to be 0. Then
solution of Eqs.~12! takes the form

a125
W11W22W3

2
, ~13!

a135
W11W32W2

2
,

a235
W21W32W1

2
.

~We take into account thatai j 5aji .) If one of ai j is nega-
tive, then two others are certainly positive. So we need o
one bounce process. Leta12,0 to be negative, then we
should introduce bouncea33 in a such way thata12 becomes
positive anda13,a23 do not change the sign. LetW1.W2,
then by choosinga335W32W12W2 /d we get new solution
of Eqs.~12!:

a125
W2

2 S 12
1

d D , ~14!

a135W11
W2

2 S 1

d
21D ,
1-3
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a235
W2

2 S 11
1

d D .

It is obvious that at anyd.1 solution ~14! is positive. If
W2.W1, one should interchangeW1 by W2 in Eqs.~14!. It
should be pointed out that atd51 solution ~14! coincides
with some solutions proposed in Ref.@9#. We do not asser
that our solution is most effective, but the given procedure
universal and can be applied to arbitrary spin.

The groups with six nonbounce processes are descr
by the set of equations

W15a111a121a131a14, ~15!

W25a221a211a231a24,

W35a331a311a321a34,

W45a441a411a421a43.

As well in the case of group with three nonbounce proces
we demandaii 50 and take into accountai j 5aji . Then we
obtain the set of equations with four equations and six v
ables, i.e., we have two free parameters. Let us assumea23
5a345a13, then we obtain solution of Eqs.~15!:

a125
W11W22W4

2
2

W3

6
, ~16!

a135
W3

3
,

a145
W11W42W2

2
2

W3

6
,

a245
W21W42W1

2
2

W3

6
.

We can guarantee positivity of terms, such as (W11W2
2W4)/2, by using a procedure that we apply for the set
equations with three equations. Thus, we introduce
bounce process. After that we obtain expressions sucha
2W3/6 with positivea. If latter expression is negative, on
can add processa335W3(121/d2), and we can provide
positivity of solution~16! by choosingd2 sufficiently large.

IV. TEST CALCULATIONS

The SSE algorithm is universal in any dimension. W
increase in dimension extra bonds arise, but ideas of l
construction remain the same. Therefore, we test the
posed scheme on 1D systems.

We calculate magnetizationM for the Heisenberg model
a mean number of bosonsNb for the Bose Hubbard mode
and energy for both models. We use well-known estimat
@9#

E52
^n&
b

, ~17!
03670
is

ed

s,

i-

f
e

p
o-

rs

M5
1

Ns
(
i 51

Ns

^Si
z&,

Nb5
1

Ns
(
i 51

Ns

^ni&,

wheren is the number of nonunit operators in operator stri
andNs is the number of sites. We have checked our res
with exact diagonalization and have found that the relat
deviation of our results from the exact is less than 1023

21024.
It is well known that integrated autocorrelation times is

quantitative measure of efficiency of a Monte Carlo sa
pling. We calculate autocorrelation times using bini
method, which is described in Ref.@3#

First of all it is interesting to analyze influence of boun
processes on efficiency of the algorithm. To this end we c
culate for the Heisenberg antiferromagnet integrated auto
relation times for magnetization by using heat-bath solut
and optimized algorithm described in the preceding sect
We consider spinS55/2 because at this value all types
groups are present and relations between number of gro
do not change with further spin increase. As shown in Fig
in the case of the optimized algorithm bounce probabilit
are less than in the case of heat-bath solution. Accordin
autocorrelation times are less for the optimized algorith
For other calculations reported here the optimized algorit
has been used.

Figure 3 shows autocorrelation times for magnetizat
versus external field for ferromagnetic~upper plot! and anti-
ferromagnetic~lower plot! Heisenberg model with differen
spin S. Calculations have been done for the chain withNs
516 sites atb510.

FIG. 2. Upper plot: bounce probabilities vs external field in t
S55/2 antiferromagnetic Heisenberg model atNs516 andb510.
Coupling constant isJ51.0. Dark circles correspond to the opt
mized algorithm and open circles correspond to the heat-bath a
rithm. Lower plot: integrated autocorrelation times for the magn
tization vs external field in the cases of optimized and heat-b
algorithms.
1-4
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One can see some increase of autocorrelation times
spin increase for the antiferromagnet chain. However, i
difficult to compare efficiency of the algorithm at fixed tem
perature and different spin. Mean number of nonunit ope
tors can be roughly estimated asNsJbS2. It is clear that this
value grows rapidly with the spinS increase. We observe tha
the mean number of nonunit operators^n&;100 at b510
andNs516 in the case of spinS51/2, whereas in the case o
spin S55/2 at the same conditionŝn&;2000. Thus, the
simulation ofS55/2 Heisenberg antiferromagnet atb510 is
as hard as the simulation ofS51/2 Heisenberg antiferromag
net atb;100. Hence, the origin of autocorrelation time i
crease is clear and, on the other hand, it is obvious that
algorithm is very efficient. It should be pointed out that t
algorithm works efficiently in a wide range of external field

For the ferromagnet chain we obtain good autocorrela
times for magnetization in a wide range of external fie
with the exception of zero field. At zero field, autocorrelati
times for magnetization become very large~we do not show
corresponding points at Fig. 3!. It is a known sequence o
degeneracy states with spins up and spins down.

Also we have done calculations for the Bose Hubb
model with interaction. As seen from Fig. 4 autocorrelati
times for energy is of the order of unity. Autocorrelatio
times for mean number of bosons grow with in increa
maximum filling numberNmax. Note that we can use an
maximum filling numberNmax, and for large class of prob
lems the valueNmax;5, . . . ,10 isquite enough.

Investigation of many-body quantum system behav
near the critical points is one of the interesting problems
condenced matter physics. Kawashimaet al. have tested
SSE-directed loop algorithm for 3D system and failed
obtain estimates for the observables near the critical p
@16#. It is well known that 1D Bose Hubbard model expe
ences superfluid-insulator transition at (t/U)c50.608, V
50, m5U @17#. We calculate autocorrelation times near t
critical point for Ns516,Ns550 chains atb510, Nmax
55. As seen from Fig. 5 autocorrelation times for both o
timized and heat-bath algorithms are quite reasonable.

FIG. 3. Integrated autocorrelation times for the magnetizat
and energy vs external field in ferromagnetic~upper plot! and anti-
ferromagnetic~lower plot! Heisenberg model with different spinS
at Ns516 andb510. Coupling constant isJ51.0.
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bounce probabilities in the case of heat-bath algorithm
very large and exceed bounce probabilities in the case
optimized algorithm by the order of magnitude. Larg
bounce probabilities give rise to enormous loops, which w
around the system many times until closed. Construction

n FIG. 4. Integrated autocorrelation times for the mean numbe
bosons and energy vs chemical potential in the Bose Hubb
model with different maximum site filling atNs516 andb510.
The hopping constant ist51.0, U50.5, V50.5.

FIG. 5. Lower plot: integrated autocorrelation times for t
mean number of bosons in the Bose Hubbard model atNs516 and
b510, Nmax55. Hopping constantt51.0, V50.0, m5U. Dark
circles correspond to the optimized algorithm, open circles co
spond to the heat-bath algorithm, and squares correspond to c
with Ns550. Middle plot: bounce probabilities for optimized an
heat-bath algorithms. Upper plot: mean length of loops in units
^n& for optimized and heat-bath algorithms, accordingly. The arr
points to the critical point ‘‘Mott insulator-superfluid.’’
1-5
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such big loops takes a lot of time and the simulation becom
inefficient. So we can conclude that the SSE algorithm
lows us to perform simulations near the critical point~at least
near superfluid-insulator transition in 1D!; however, it is de-
sirable to exclude bounce processes.

V. SUMMARY

In conclusion it should be emphasized that the algorit
introduced here allows us to explore the Heisenberg mo
with arbitrary spin and the Bose Hubbard model with int
action. With the help of filling number representation w
create the unified code for both models. Note that from
gorithmic point of view differences between the models ar
only at the stage of matrix elements calculation.

We propose a universal procedure for excluding bou
processes. It has been obtained that for groups with one
three processes only one bounce is needed and in the ca
le

v.

J.

tt.
.

B

. B
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groups with six processes maximum two bounces
needed. We have found that relations between numbe
various groups are different up to spinS55/2 ~maximum
filling numberNmax55). After spinS55/2 the relations do
not change.

Calculations of integrated autocorrelation times dem
strate increased efficiency of the algorithm under bou
processes excluding. We have shown that the proposed a
rithm works in a wide range of external fields both for th
Heisenberg model with arbitrary spinS and for the Bose
Hubbard model with interaction. Also we have found that t
algorithm is efficient near the superfluid-insulator transitio
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@9# O.F. Syljuåsen and A.W. Sandvik, Phys. Rev. E66, 046701

~2002!.
@10# A.W. Sandwik, Phys. Rev. B66, 024418~2002!; S. Wessel, M.

Olshanii, and S. Haas, Phys. Rev. Lett.87, 206407~2001!; S.
r,

B

Yunoki, Phys. Rev. B65, 092402~2002!.
@11# A. Dorneich, W. Hanke, E. Arrigoni, M. Troyer, and S.C

Zhang, Phys. Rev. Lett.88, 057003~2002!; F. Hebert, G.G.
Batrouni, R.T. Scalettar, G. Schmid, M. Troyer, and A. Dorn
ich, Phys. Rev. B65, 014513~2002!; G. Schmid, S. Todo, M.
Troyer, and A. Dorneich, Phys. Rev. Lett.88, 167208~2002!.

@12# R.T. Clay, S. Mazumdar, and D.K. Campbell, Phys. Rev. Le
86, 4084~2001!; P. Sengupta, A.W. Sandvik, and D.K. Cam
bell, Phys. Rev. B65, 155113~2002!.

@13# S. Todo and K. Kato, Phys. Rev. Lett.87, 047203~2001!; K.
Harada, M. Troyer, and N. Kawashima, J. Phys. Soc. Jpn.67,
1130 ~1998!.

@14# S. Bergkvist, P. Henelius, and A. Rosengren, Phys. Rev. B66,
134407~2002!.

@15# P. Henelius, P. Fro¨brich, P.J. Kuntz, C. Timm, and P.J. Jense
Phys. Rev. B66, 094407~2002!.

@16# J. Smakov, K. Harada, and N. Kawashima, e-pr
cond-mat/0301416.

@17# V.A. Kashurnikov and B.V. Svistunov, Phys. Rev. B53, 11776
~1996!.
1-6


